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Abstract

We consider slightly non-extremal black 3-branes of type IIB supergravity and show that

their Bekenstein-Hawking entropy agrees with the counting of states of the Dirichlet 3-brane.

The Dirichlet brane excitations are described in terms of the statistical mechanics of a 3+1

dimensional gas of massless open string states. This is essentially the classic problem of black-

body radiation. The blackbody temperature is shown to be identical with the temperature

of the Hawking radiation. We also construct a solution of type IIB supergravity describing a

3-brane with a finite density of longitudinal momentum. For extremal momentum-carrying

3-branes the horizon area vanishes. This is in agreement with the fact that the BPS entropy

of the momentum-carrying Dirichlet 3-branes is not an extensive quantity.
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1 Introduction

Apart from their intrinsic importance, black holes4 provide a testing ground for the quantum

theory of gravitation. Classical General Relativity, together with quantum field theory,

implies that a black hole should be assigned an entropy equal to one-fourth of its horizon

area measured in Planck units [1, 2]. In a fundamental theory of quantum gravity this

Bekenstein-Hawking entropy should have a statistical interpretation. It has been argued

[3, 4, 5] that string theory provides such an interpretation, because very massive fundamental

string states should form black holes, and the number of such states exhibits the exponential

Hagedorn growth.

Recently, a much improved understanding of the Ramond-Ramond charged string soli-

tons has emerged through the Dirichlet brane description [6, 7]. This has led to rapid

progress on the black hole entropy problem. In [8] a certain extremal 5-dimensional black

hole was constructed so that its horizon area is non-vanishing. It was shown that the log-

arithm of its ground state degeneracy, calculated with D-brane methods, precisely matches

the Bekenstein-Hawking entropy. This remarkable finding has been extended in a number of

directions. In [9] it was generalized to rotating black holes. In [10] a similar 5-dimensional

example was considered, and it was further shown that the entropy of slightly non-extremal

black holes also matches the Bekenstein-Hawking result. This allowed for a D-brane cal-

culation of the temperature of Hawking radiation. In [11] similar results were obtained

for slightly non-extremal black strings in 6 dimensions (upon compactification these strings

reduce in a certain limit to the 5-dimensional black holes of [8]).

At this stage it is important to elucidate the criteria for agreement between the D-brane

and the Bekenstein-Hawking entropy, and to find new successful examples. In this paper we

provide a new and very simple example of a black p-brane whose D-brane entropy matches

the Bekenstein-Hawking entropy. This is the self-dual 3-brane in 10 dimensions. Since it

couples to the self-dual 5-form, it automatically carries equal electric and magnetic charge

densities. A special property of this object, as well as of those in [8]–[11], is that the string

coupling is independent of position. Control over the value of the string coupling at the

horizon appears to be necessary for agreement between the two definitions of entropy. For

p-branes with p < 3 it is easy to check that the D-brane entropy is not proportional to the

horizon area. This is likely due to the string coupling becoming strong near the p-brane.

The original 3-brane solution of type IIB supergravity was constructed in [12]. In section 2

we observe that at extremality this solution has vanishing horizon area. We construct a new

class of solutions describing 3-branes carrying finite momentum density along one of its

internal dimensions. Although the longitudinal momentum is known to stabilize the horizon

area of extremal black strings [11], here we find that it does not. The fact that the classical

entropy is zero agrees with the fact that the logarithm of the ground state degeneracy of

the momentum-carrying Dirichlet 3-branes is not an extensive quantity. In order to address

4In this short note we will not attempt to reference all of the developments in the recent black hole

literature.
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objects with non-vanishing horizon area, in section 3 we consider slightly non-extremal 3-

branes, whose masses satisfy δM = M − M0 ≪ M0. To leading order in the parameter

δM/M0, which is a measure of deviation from extremality, we find agreement between the

D-brane entropy and 1/4 of the horizon area. Amusingly, the statistical mechanics of a

non-extremal 3-brane is that of a photon (and photino) gas in 3 + 1 dimensions, which is

the classic blackbody radiation problem. The scaling of entropy with energy may be derived

essentially from the well-known blackbody scaling laws,

M − M0 ∼ V T 4 , S ∼ V T 3 . (1)

Working out the overall factor in the Bekenstein-Hawking relation forces us to the surprising

conclusion that only the transverse excitation modes of the 3-brane should be counted in de-

termining the entropy. The internal (longitudinal) degrees of freedom are somehow required

to be absent from the counting.

Upon coupling of the 3-brane to the 10-dimensional world, waves colliding on the 3-

brane may be converted to massless closed string states. This is Hawking radiation in the

D-brane language [10]. The blackbody temperature that one assigns to a non-extremal 3-

brane acquires the interpretation of the Hawking temperature. In section 4 we conclude with

a brief discussion.

2 Entropy of 3-branes carrying longitudinal momen-

tum

The 3-brane solution to the equations of type IIB supergravity was originally obtained by

Horowitz and Strominger [12] and is given by

ds2 = −∆+∆
−1/2
− dt2 + ∆

1/2
− (dx2

1 + dx2
2 + dx2

3) + ∆−1
+ ∆−1

− dr2 + r2dΩ2
5

F(5) = Q(ε5 + ∗ε5)

Φ = const . (2)

In these equations F(5) is the Ramond-Ramond self-dual 5-form field strength coupling to

the 3-brane, and the dilaton field has an arbitrary constant value for this solution. We have

also defined

∆±(r) =

(

1 − r4
±

r4

)

. (3)

The charge density on the 3-brane is

Q = 2r2
+r2

− ≡ 2r4
0 (4)

up to a convention-dependent proportionality constant. In this section we will ignore such

constants since they are irrelevant to our calculations. For the solution to be well-behaved,
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we need r+ ≥ r−. Extremality is achieved when the horizon radius r+ becomes equal to r−.

The extremal ADM mass is proportional to Q, as required by supersymmetry. The extremal

solution preserves one-half of the ten dimensional type IIB supersymmetries, i.e. N = 1.

We also introduce an infrared cut-off by compactifying each internal coordinate xi on a very

large circle of radius L, i.e. imagine that the 3-brane is wrapped around a large 3-torus T 3.

The 8-dimensional area of the horizon is

A = ω5r
5
+L3 [∆−(r+)]3/4 , (5)

where ω5 = π3 is the area of a unit 5-sphere. The classical black 3-brane entropy,

SBH =
A

4
, (6)

therefore vanishes in the extremal limit.

If we fix the charge and consider a slightly non-extremal black 3-brane then, as we will

see in the next section, the entropy of the classical extremal black 3-brane scales as

Sext ∼ ω5L
3r5

0

[

δM

M0

]3/4

. (7)

In the case of the black string [12], which also had zero area at extremality, it was possible

to perform a boost along the string to induce simultaneously finite ADM momentum and

horizon area.

It is also easy to inject momentum P along one5 of the three spatial worldbrane directions,

which we take to be x1. The appropriate solution may be found by performing a (now-

standard) boost on the solution (2). In this way we obtain

ds2 = −
(

cosh2 α∆+∆
−1/2
− − sinh2 α∆

1/2
−

)

dt2

+
(

cosh2 α∆
1/2
− − sinh2 α∆+∆

−1/2
−

)

dx2
1

+ sinh(2α)
(

∆
1/2
− − ∆+∆

−1/2
−

)

dtdx1

+ ∆
1/2
− (dx2

2 + dx2
3) + ∆−1

+ ∆−1
− dr2 + r2dΩ2

5 . (8)

If we imagine that the T 3 is small, then we can think of the configuration (8) as a seven-

dimensional black hole. The black hole has a gauge charge corresponding to the gauge field

which comes from the (t, x1) cross term in the metric. Note that this extremal solution is still

BPS-saturated, as it preserves one supersymmetry of a possible four (type IIB compactified

on T 3 to d = 7 has N = 4 supersymmetry). In ten dimensional language this “charge” is

just the total ADM momentum, which is given by

PADM =
L3ω5

8π
sinh(2α)(r4

+ − r4
−)

≡ 2πn

L
, (9)

5Note that our conclusions would be unchanged if we performed additional boosts involving any of the

other spatial worldbrane directions.
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where n is an integer and we are keeping the ten dimensional Newton constant fixed.

If we let the deviation from extremality go to zero, but also take the limit of infinite

boost parameter, then for finite ADM momentum

PADM ∼ L3ω5Q

[

e2α δM

M0

]

, (10)

we need the scaling δM/M0 ∼ e−2α.

Then the entropy of a BPS-saturated state with this momentum number n is finite and

given by

SBPS ∼ 2π
√

2n

∼ L2 [ω5Q]1/2

[

δM

M0
e2α

]1/2

. (11)

This quantity is not extensive in the spatial worldvolume of the 3-brane. The entropy density,

measured per unit spatial worldvolume, goes as

sBPS ≡ SBPS

L3
→ 0 . (12)

For a Dirichlet p-brane, this zero BPS entropy will actually happen for any value of p > 1, as

follows. A BPS-saturated excitation on the worldvolume is effectively restricted to live in a

single dimension, because if there were two finite orthogonal momenta then the state would

no longer be BPS-saturated. Therefore the scaling goes as SBPS ∼ √
n, while PADM ∼ Lp,

so that n ∼ Lp+1, and therefore

sBPS ∼ L(p+1)/(2p) → 0 . (13)

So we see that in order to have finite, nonzero ADM momentum and finite, nonzero entropy,

both measured per unit spatial worldvolume, we need p = 1, i.e. the string.

Let us now compare this conclusion about the Dirichlet 3-brane entropy with results for

the classical black 3-brane configuration. Due to the boost, we find that the Bekenstein-

Hawking entropy of the classical configuration (2) is altered from its previous value to

SBH =
ω5

4
r5
+L3 [∆−(r+)]3/4 cosh α

∼ ω5L
3r5

0

[

δM

M0

]3/4

eα (14)

as α → ∞ and δM/M0 → 0. Let us now take the limit such that the ADM momentum

remains finite. Then we need the scaling δM/M0 ∼ e−2α and so the classical 3-brane area

goes as

A ∼ e−3α/2eα → 0 . (15)

This tells us that the BPS-saturated 3-brane with finite nonzero momentum still has zero

area. Note that if we consider a modified area given by the classical horizon area divided by
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√

g22(r+)g33(r+), this scales similarly to the quantity (11); however, it is difficult to give this

modified area an enlightening physical interpretation. 6

Therefore we see that the entropy of the BPS-saturated classical 3-brane with momentum,

which by definition is extensive in the horizon area, is also zero. It is satisfying that the

entropies on the classical black 3-brane and Dirichlet 3-brane sides agree, as expected.

3 Statistical Mechanics of Non-extremal 3-branes

In this section we will consider non-BPS excitations of the 3-brane. In the D-brane picture

the excitations we have in mind are described by a dilute gas of massless open string states

running along the brane in arbitrary directions. The average total momentum is zero. The

momenta of the massless string states are quantized:

~p =
2π

L
~n (16)

where ~n ∈ Z3. The mass of the excited 3-brane is

M = M0 + δM =

√
π

κ
L3 +

k
∑

i=1

2π

L
|~ni| + O(g) . (17)

Here M0 is the mass of the extremal 3-brane [13], k is the number of open strings, and

κ =
√

8πGN = gα′2 . (18)

The O(g) term in (17) accounts for interactions among the strings. The validity of counting

these states and no others to obtain the entropy of a non-extremal p-brane was discussed

in [14] for the case p = 1, and the same arguments apply here. In particular, our ability

to control the decay rate of the non-BPS states by making L large allows us to count these

states reliably with g and hence GN finite.

Rather than calculating the degeneracy of excited 3-brane states at a given δM directly,

let us instead consider the statistical mechanics of massless open string states in the grand

canonical ensemble. The temperature T will later be identified as the Hawking temperature,

but for now one can regard our ensemble calculations as a trick to figure out the degeneracies

of brane excitation levels.

Writing down the correct partition function turns out to be more subtle than one might

first expect. We claim that the correct answer is

Z =
∏

~n∈Z3

(

1 + q|~n|

1 − q|~n|

)6

(19)

6Note also that in the above scaling limit gtt diverges on the horizon. We thank Gary Horowitz for

pointing this out to us.
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where we have defined

q = e−2π/LT . (20)

Naively one would expect the exponent in (19) to be 8, not 6, since there are eight massless

bosons and eight massless fermions in the open string spectrum. The dynamics of these

modes on the brane is given by N = 4 supersymmetric pure Yang-Mills theory with gauge

group U(1) [15, 16, 17]. For our purposes, however, it is more revealing to view this theory

as N = 1 Yang-Mills plus six chiral multiplets. The chiral multiplets are associated with

transverse oscillations of the brane, while the gauge multiplet describes internal degrees of

freedom. To obtain agreement with the Bekenstein-Hawking entropy it seems necessary to

count only the modes of transverse oscillation, hence the exponent 6 in (19).

What subtlety of the gauge dynamics might prevent the gauge degrees of freedom from

being enumerated along with the transverse oscillations? A. Tseytlin has suggested to us the

following interesting mechanism [18]. If one imposes periodic boundary conditions on the

gauginos along the Euclidean time direction rather than the standard antiperiodic boundary

conditions, then the two physical gaugino degrees of freedom introduce a factor (1−q|~n|)2 into

the partition function, exactly cancelling the gauge boson contribution, (1 − q|~n|)−2. Thus

the gauge dynamics becomes in effect topological. We look forward to exploring possible

justifications and consequences of this insightful guess for the gaugino boundary conditions.

Equation (19) includes six physical bosonic and six physical fermionic modes, and in 3+1

dimensions each fermion mode makes 7/8 the contribution of a boson mode to the entropy

and energy (the corresponding ratio in 1 + 1 dimensions is 1/2). Using the relations

F = −T log Z
E = T 2 ∂

∂T
log Z

S = (E − F )/T
(21)

we find

E =
3π2

8
L3T 4

S =
π2

2
L3T 3 . (22)

At this point it is easy to see how things change when nw 3-branes are stacked on top of

one another. The massless open strings can now connect any two of the branes, so there

are n2
w states for every one state we had before. In this context it is important to recall

that there is no binding energy among the 3-branes [15], so strings running between different

branes really are massless. Furthermore, when L is large, it makes no difference whether we

consider nw singly wound branes or one brane wrapped nw times around T 3: the asymptotic

density of massless string states per unit volume is unaffected by such changes in boundary

conditions.

To recapitulate, the prescription for nw > 1 is to consider n2
w (very weakly) coupled

thermodynamic systems, each identical to the nw = 1 system treated above. Thus (22)
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becomes

E =
3π2

8
n2

wL3T 4

S =
π2

2
n2

wL3T 3 . (23)

The relation between E and S in the microcanonical ensemble is determined by eliminating

T from (23):

S = 25/43−3/4√πnwL3/4E3/4 . (24)

Setting E = δM in (24), one obtains the entropy of non-extremal 3-branes with mass M0 +

δM . Using the formula [13]

M0 =

√
π

κ
nwL3 (25)

one can show finally that

S = 25/43−3/4π7/8n5/4
w κ−3/4L3 (δM/M0)

3/4 . (26)

This expression for S should be comparable to the Bekenstein-Hawking entropy. Let us

therefore turn to the calculation of the horizon area in the low-energy supergravity theory.

The ADM mass formula for the black 3-brane described by the metric (2) is [19]

MADM =
ω5L

3

2κ2
(5r4

+ − r4
−) . (27)

Applying this formula to the extremal case r+ = r− = r0 and comparing with (25), one finds

r4
0 =

√
π

2ω5
nwκ . (28)

The RR charge remains unchanged as we perturb away from extremality, so r− = r2
0/r+.

Writing r+ = r0 + ε, one finds from (27) that

δM

M0
= 6

ε

r0
(29)

to lowest order in ε. Thus the horizon area of the metric (2) is

A = ω5r
5
+L3

(

1 − r4
−

r4
+

)3/4

= 29/4ω5r
5
0L

3
(

ε

r0

)3/4

= 21/43−3/4π−1/8(nwκ)5/4L3 (δM/M0)
3/4 (30)

and the Bekenstein-Hawking entropy is

SBH =
2πA

κ2
= 25/43−3/4π7/8n5/4

w κ−3/4L3 (δM/M0)
3/4 (31)
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in exact agreement with (26)!

A bonus we get for computing the entropy in the grand canonical ensemble is that the

blackbody temperature T used in (19-23) is precisely the Hawking temperature. This is a

trivial consequence of the relation M = M0 +E where E is the energy of the gas of massless

open strings. We know from ordinary statistical mechanics that dE = TdS when L is held

fixed. But dE = dM , so the relation dM = THdSBH from black hole thermodynamics leads

immediately to

TH = T =

(

8

3π2nw

δM

L3

)1/4

. (32)

At first it seems surprising that the Hawking temperature should be independent of the string

coupling g. But it becomes inevitable when one realizes that TH = T , since the properties

of the dilute gas of open string states characterizing the excitation of the D-brane depend

in no way on g. The string coupling determines only the degree of diluteness necessary to

make our arguments valid. It remains a fascinating problem to derive this g-independent

temperature from a string perturbative calculation of the amplitudes for decay processes of

the excited 3-brane, similar to the scattering amplitudes computed in [21].

Note that if we had included all eight bosonic and fermionic modes in the statistical

mechanics treatment of D-brane excitations, we would have obtained an entropy [20]

S =
(

4
3

)1/4
SBH . (33)

A compensating factor would then have to be introduced into (32) if the thermodynamic

relation dM = THdSBH is to be preserved.

4 Discussion

In this paper we have presented a very simple Dirichlet brane system whose entropy is

reproduced by the Bekenstein-Hawking entropy of the corresponding low-energy supergravity

solution. This agreement, not only in the scaling with respect to all parameters but in the

coefficient as well, is so miraculous that it clearly requires a deeper understanding. How

does classical type IIB supergravity “know” the Planck formula for blackbody spectrum?

Apparently it does. And what are we to make of the necessity of excluding the gauge

modes from the state-counting calculation of D-brane entropy? In view of the success of

the suggestion [18] to make the gaugino fields periodic in Euclidean time, we would view

the Bekenstein-Hawking result as a hint of topological gauge dynamics on the brane. The

precise role of the worldvolume gauge field needs to be explored in detail.

Motivated by [10] we would also like to show precisely how the 3-brane blackbody tem-

perature translates into the Hawking temperature of the outgoing closed string radiation.

We hope to report on these issues in the near future.
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